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ABSTRACT

Objective function landscape approximation methods in
evolutionary optimisation can be a beneficial technique,
since they replace part of the calls to the original, of-
ten computationally expensive objective function, with
calls to a faster and computationally cheaper function
approximator, such as a polynomial or an artificial neu-
ral network. Moreover, in some cases, the approximate
model smoothens rough fitness landscapes, facilitating
the stochastic search. In this paper, we apply a neu-
ral network-based approximation technique to spacecraft
interplanetary trajectory problems. These multimodal
problems, recently introduced in the global optimisation
community, can be very complex and characterised by the
prevalence of many local optima and, in the worst cases, a
heavy computation load involved with the calculation of
the objective value of a given input vector. We perform
the first steps to integrate an approximated model into a
trajectory optimisation process, building a hybrid system
where both the original trajectory model and the approx-
imated model are carefully used in the optimisation pro-
cess without degrading the quality of the final trajectory
found.

Key words: Artificial Neural Networks, trajectory opti-
misation, approximation, objective function.

1. INTRODUCTION

The computational cost involved in the solution of global
optimisation problems is often directly linked to the
very large number of fitness function evaluations needed.
Among the many approaches that emerged in the last
decades aiming at reducing this cost by using the infor-
mation gathered during the optimisation process, is mak-
ing use of an approximation of the original, often ex-
pensive, objective function (see [Jin05] for a good re-
view of these methods). These approaches make use
of mathematical models or machine learning techniques
based on learning and interpolation from original input
vector/objective function pairings. Among other ma-
chine learning techniques for function approximation (as
Support Vector Machines, for example), artificial neu-

ral networks (ANNs) have been employed to approxi-
mate the objective functions in global optimisation prob-
lems [JMS02]. Originally, ANNs were summoned to
speed up a potentially expensive optimisation process, as
for certain processes, calculating an objective value may
take hours or days of computation time. However us-
ing an approximate fitness function during the evolution
may also lead to better results and a better convergence,
because this way a very rugged fitness landscape can be
smoothened.

Neural networks are known to be powerful computational
tools that are widely used in a very broad range of ap-
plications; from stock market predictive models to con-
trolling autonomous robots [NF00, ATT+09]. Loosely
inspired by biological neural networks, artificial neural
networks are able to efficiently compute complex in-
put/output mappings thanks to their inherent parallelism
and simplicity: a single hidden layer feed forward neu-
ral network is capable of approximating any continuous,
multivariate function to any desired degree of accuracy,
provided enough neurons are used [Has95]. When us-
ing ANNs to approximate the fitness landscape during
an optimisation process, the capability of the network to
“learn” the fitness trend is a crucial characteristic of the
network that will clearly affect the benefit resulting from
its use and that clearly is problem dependent.

In this paper, we study the possibility to use an approx-
imated model during the evolutionary optimisation pro-
cess of interplanetary trajectories, by presenting some
preliminary but very encouraging results. This class of
test functions for global optimisation has been recently
introduced as such by Vinkó et al. [VIB07] in 2006.
Each function, essentially, expresses a spacecraft trajec-
tory performance index (often the final spacecraft mass
at arrival) as a function of the strategy adopted to reach
the mission goals (e.g., launch date, thrusting location
and magnitude, fly-by sequence etc.). A large number
of different test function instances can be derived from a
rather general description, by specifying different goals
or possible strategies (for example, a rendezvous mission
to Jupiter will look radically different from a fly-by mis-
sion to Pluto, depending on the spacecraft propulsion sys-
tem adopted, the launcher used or the launch window). It
is beyond the scope of this paper to give the exact ex-
pression of each function; instead, we just stress here
that both its minimal value and its taxonomy vary con-
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siderably by changing the function domain, the planet
ephemerides and a large number of parameters values
(e.g., the strength of the Sun gravity). Thus, it is ex-
tremely important, when performing any test, to use stan-
dardized instances of the problem. In our experiments,
we used some of the problem instances posted in the Ad-
vanced Concepts Team Global Trajectory Optimisation
(GTOP) database together with the MATLAB code there
provided [VIB07].1

Trajectory optimisation problems have been demon-
strated to have a high degree of complexity [MBNB04].
The fitness landscape for many problems can be high
dimensional and it has many local optima, where most
global optimisers tend to get stuck. Typically, for such
problems, the global optimum is not known in advance.
Moreover, some of these problems, especially low-thrust
problems, tend to be characterised by computationally
heavy calculations involved with the computation of the
objective value for a given input vector. For the great
majority of these problems an extensive amount of func-
tion evaluations is required until an acceptable solutions
is found. These characteristics are a good hint that the
use of an approximate model may contribute to speed up
the optimisation process in terms of computation time;
when a large amount of function evaluations is required,
the use of ANNs will significantly affect the computa-
tional resources required. Arguably, the introduction of
the approximate model during the optimisation process
creates a new optimisation algorithm with a different per-
formance which needs to be evaluated.

Interplanetary trajectory optimisation problems can be
particularly hard to handle because of the issues outlined
above, and typically researchers have to resort to com-
plex strategies in order to obtain good results in a rea-
sonable time. One example is parallel architectures, as
in [IRA09], where the island-model for global optimisa-
tion is used. Other approaches typically include the mix
of global and local search [ACLS08], the use of space
pruning [IBM+07] or the development of ad hoc algo-
rithms exploiting knowledge of the search space.

This article is organised as follows. In section 2 we pro-
vide the implementation details and essentially the opti-
misation algorithm introduced. In section 3 we describe
the three different trajectory optimisation problems we
apply our algorithm to, and in section 4, we compare the
results of the algorithm making use of the approximation
to the algorithm using only the original fitness function.
Finally, in section 5 we draw conclusions and propose fu-
ture directions to be explored.

2. THE IMPLEMENTATION

Our implementation features an ANN as an approximate
fitness model, which gets created and trained on-line.

1GTOP is a database containing the exact definition of some global
optimisation spacecraft trajectory problems and their best putative solu-
tions, seewww.esa.int/gsp/ACT/inf/op/globopt/

This means that we do not waste original fitness eval-
uations to collect enough data and train a neural net-
work that approximates the original objective function
with some arbitrary precision in advance, and then use
this to perform the optimisation. Instead, we commence
with the optimisation process employing the original ob-
jective function, collecting input/output pairs along the
way, which we use to adaptively train a randomly created
ANN. Once the ANN is trained with the data collected
during the first phase, we perform the optimisation with
the ANN instead of the original objective function. This
loop is continued until a termination criterion is fulfilled.

A very important issue in evolutionary optimisation with
approximate fitness functions is avoiding convergence to
false optima. According to [JMS02], a general tip for en-
suring the correct convergence is to use controlled evolu-
tion, both individual and generation based. Generation-
based evolution refers to the fact that a part of the total
evaluations (or generations) is performed with the origi-
nal objective function and the rest with the approximate
one. On the other hand, individual-based controlled evo-
lution requires that while using the ANN, some individ-
uals in the population are still evaluated with the origi-
nal fitness function. This may reduce the benefit we gain
from using a faster process but it proves to guarantee cor-
rect convergence and avoidance of false optima.

The pseudo-code below describes our experimental
setup;J refers to the original objective function,P and
P ′ refer to the current and the new population created by
the evolutionary algorithm used, respectively. We also
indicate withN the neural network approximation to the
objective function.

create a random populationP
while function evaluations are allowed

evaluateP with respect toJ
for X generations do:

createP ′ fromP using the selected algorithm
evaluateP ′ with respect toJ
insertP ′ intoP

for Y generations do:
createP ′ fromP using the selected algorithm
evaluateP ′ with respect toJ
trainN usingP ′

insertP ′ intoP

evaluate the worst half ofP with respect toN
for Z generations do:

createP ′ fromP using the selected algorithm
evaluate the worst half ofP ′ with respect toN
evaluate the best half ofP ′ with respect toJ
insertP ′ intoP

createP ′ fromP using the selected algorithm
evaluateP ′ with respect toJ
insertP ′ intoP

In the experiments we have performed we have used
X = 75, Y = 25 andZ = 100. As global optimiser we



have used Differential Evolution [SP97], and in particu-
larDE/rand − to − best/1/exp andDE/rand/1/bin
simply referred to as DE3 and DE7, respectively, with the
following parameter values:

• Amplification factorF = 0.8;

• Crossover constantCR = 0.8;

• Population sizeNP = 20.

Every iteration of the Differential Evolution algorithm
consists of three phases: mutation, crossover and selec-
tion. During the mutation phase, for every individual
in the population, a so-called mutant individual is cal-
culated. For the two aforementioned DE variants, the
formulae used to calculate the mutantvi,G+1 of the i-
th individual used to create the generationG + 1 are the
following:

For DE3:

vi,G+1 = xi,G + F · (xi − x⋆,G) + F · (xr1,G − xr2,G);

for DE7:

vi,G+1 = xr1,G + F · (xr2,G − xr3,G);

whereG is the iteration number,x⋆,G is the best indi-
vidual found up to iterationG, r1−3 are 3 different, ran-
domly selected indices of individuals, andF > 0 is the
constant amplification factor (one of the algorithm pa-
rameters). DE3 uses the exponential crossover strategy
and DE7 the binary crossover. Reinsertion is used, that is,
the selection method resembles the greedy approach—a
new individual replaces the old one in the population if
and only if it has a better value of the objective function.
In case this value has been calculated with the neural net-
work, the new individual replaces the old only if also its
fitness evaluated with the original fitness function has a
better value.

The neural network we have decided to use is a Multi-
Layer Perceptron (MLP) with two hidden layers, each
one composed of 25 neurons. The transfer function of
the neurons in the first hidden layer is the logistic func-
tion, while neurons of the second hidden layer use the
tangent as transfer function. Output neurons are charac-
terised by a linear fitness function. The training algorithm
employed for the neural network is the Levenberg Mar-
quardt algorithm [Mar63] as implemented in MATLAB,
and the training epochs are fixed to 25 per dataset to be
learned. The number of epochs which ultimately defines
how well the network approximates the input/output vec-
tor pairs has been chosen deliberately to be rather low in
order to avoid overtraining. Notice that due to our im-
plementation, the size of the dataset to be learned every
time has a fixed size of 20 input/output vector pairs (equal
to the population size), where the input vector size is 22
and the output vector is one dimensional and encodes the
fitness of the input vector. It is important to notice that
the choices outlined above are arbitrary and are meant to
provide a first implementation of the new algorithm. In
future work, we intend to optimise all decisions involved
in the implementation of our system.

3. EXPERIMENTS

In order to assess the performance of the approximate
model with respect to the original model, we run the
following experiments. Since the global optima are un-
known, we cannot use any definition of a successful
run, as in finding the global optimum. Instead, we al-
low a maximum number of function evaluations, set to
1,000,000 or 2,000,000, depending on the problem con-
sidered, and we record at the end of the evolution the
minimum, mean and maximum of the objective values
achieved across 20 runs of the optimisation process. No-
tice that the optimisation problems considered are min-
imisation problems, that is, better solutions have lower
objective values. In the following we present the three
different problems we consider as a test-bed for the de-
veloped algorithm.

3.1. MGA Global Optimisation Problems - Cassini 1

A simple benchmark to test global optimisation algo-
rithms in Space Mission Design related problems is the
Multiple Gravity Assist (MGA) problem. In mathemat-
ical terms this is a finite dimension global optimisation
problem with non-linear constraints. It can be used to
locate the best possible trajectory that an interplanetary
probe equipped with a chemical propulsion engine may
take to go from the Earth to another planet or asteroid.
The spacecraft is constrained to thrust only at planetary
encounters.

The Cassini1 problem is an MGA problem related to the
Cassini spacecraft trajectory design problem. The ob-
jective of this mission is to reach Saturn and to be cap-
tured by its gravity into an orbit having pericenter radius
rp = 108950 km, and eccentricitye = 0.98. The plane-
tary fly-by sequence considered is Earth, Venus, Venus,
Earth, Jupiter, Saturn (as the one used by the Cassini
spacecraft). As objective function we use the total deltaV
accumulated during the mission, including the launch
deltaV and the various deltaV one needs to give at the
planets and upon arrival to perform the final orbit injec-
tion. The input state vector is six dimensional.

3.2. MGA-DSM Global Optimisation Problems -
Cassini2

In Multiple Gravity Assists with one Deep Space Ma-
neuver problems (MGADSM), a spacecraft is required
to perform a given mission in the interplanetary medium
using impulsive thrusters that are allowed to fire only
once between two subsequent planets of a preassigned
fly-by sequence. This creates an unconstrained global
optimisation problem, as far as further constraints are
not explicitly specified. In the case of Cassini2, the tar-
get planet is Saturn and the assigned planetary sequence
is Earth-Venus-Venus-Earth-Jupiter-Saturn, resulting in a
problem dimensionD = 22. The mission goal is the



insertion around Saturn in an orbit similar to the orbit
the Cassini spacecraft achieved in 2004. The fact that
deep space maneuvers are allowed between each one of
the planets leads to a higher dimensional problem with a
much higher complexity, with respect to the MGA prob-
lem Cassini1. Also, in the objective function evaluation,
a rendezvous problem rather than an orbital insertion as
in Cassini1 is considered.

3.3. MGA-DSM Global Optimisation Problems -
Messenger

This trajectory optimisation problem represents a ren-
dezvous mission to Mercury modelled as an MGA-DSM
problem. The selected fly-by sequence is the same used
in the first part of the Messenger mission. It is well known
that a significant reduction of the required deltaV is pos-
sible if a number of resonant fly-bys follow the first Mer-
cury encounter. The input state vector has a dimension of
18.

4. RESULTS

The results for all experiments performed are summarised
in tables 1, 2, 3, 4, 5, 6. We performed Welch’s unpaired
t-test by comparing the means, the maximum, the stan-
dard deviation and the amount of samples for the two
algorithms; what we observe is that the performance of
all hybrid algorithms (using the ANN approximation of
either the original mga or mgadsm objective function) is
not statistically different from the performance of the re-
spective original algorithm (mga or mgadsm). This is a
proof that the introduction of the approximate model does
not lead to performance degradation for the algorithm.

Moreover, we observe that the hybrid model is able to
find for all experiments performed, along the 20 runs, the
same or a better best solution (in terms of minimum value
found by the twenty runs). In fact, the solutions discov-
ered are close to the best solutions found to the problems
tackled, as reported in the GTOP database mentioned ear-
lier. Even if the performance of the optimisation is not
significantly improved, this improvement of the best so-
lution found is an encouraging hint that the approximate
model may also introduce an improvement in solution
quality rendered, along with the inherent speedup related
to faster function evaluations. Interestingly, these im-
provements are more visible in the case of DE7 than for
DE3. This implies that the global optimisation algorithm
used influences the behaviour of the hybrid algorithm em-
ploying the approximate model. This of course comes as
no surprise as every algorithm’s performance is depen-
dent on the problem and the algorithm, but a methodolog-
ical approach to understanding which algorithms seem to
be better suitable for approximation models can be very
beneficial and will be subject of future work.

We finally investigated the convergence properties of the

Cassini 1, DE7
ANN+mga mga

min 5.034 5.034
max 16.722 12.542
mean 9.450 8.517
std 3.3765 3.001

Table 1. The minimum, maximum, mean and the stan-
dard deviation of the best fitness values obtained by 20
runs after 1,000,000 evaluations of the ANN+mga objec-
tive function and the original mga function, for Cassini1,
using DE7 .

Cassini 1, DE3
ANN+mga mga

min 4.9307 5.0304
max 16.722 16.818
mean 9.576 11.161
std 3.001 2.6371

Table 2. The minimum, maximum, mean and the stan-
dard deviation of the best fitness values obtained by 20
runs after 1,000,000 evaluations of the ANN+mga objec-
tive function and the original mga function, for Cassini1,
using DE3.

Cassini 2, DE7
ANN+mgadsm mgadsm

min 8.6693 10.1859
max 26.2018 21.5495
mean 15.7956 17.1691
std 4.9271 3.4968

Table 3. The minimum, maximum, mean and the standard
deviation of the best fitness values obtained by 20 runs af-
ter 1,000,000 evaluations of the ANN+mgadsm objective
function and the original mgadsm function, for Cassini2,
using DE7.

Cassini 2, DE3
ANN+mgadsm mgadsm

min 16.1905 16.538
max 21.3807 24.479
mean 20.4857 20.993
std 1.1956 1.985

Table 4. The minimum, maximum, mean and the standard
deviation of the best fitness values obtained by 20 runs af-
ter 1,000,000 evaluations of the ANN+mgadsm objective
function and the original mgadsm function, for Cassini2,
using DE3.



Messenger, DE7
ANN+mgadsm mgadsm

min 8.9835 10.9550
max 19.1289 12.9891
mean 12.1506 11.9721
std 2.3563 1.0435

Table 5. The minimum, maximum, mean and the standard
deviation of the best fitness values obtained by 20 runs af-
ter 2,000,000 evaluations of the ANN+mgadsm objective
function and the original mgadsm function, for Messen-
ger, using DE7.

Messenger, DE3
ANN+mgadsm mgadsm

min 10.0300 10.090
max 14.0660 13.996
mean 12.3546 12.002
std 1.2725 1.102

Table 6. The minimum, maximum, mean and the standard
deviation of the best fitness values obtained by 20 runs af-
ter 2,000,000 evaluations of the ANN+mgadsm objective
function and the original mgadsm function, for Messen-
ger, using DE3.

hybrid algorithm with respect to the original algorithm.
In figure 1 we can see for Cassini2 and DE7, the mean,
minimum and maximum objective value along the twenty
evolutionary runs, as the number of fitness evaluations
grows, for the two algorithms. What we can observe
is a very similar convergence behaviour, which confirms
our claim that the new hybrid algorithms behaves very
closely to the original optimisation algorithm. We can
see that the evolution of the mean over time is very sim-
ilar, and the only differences are the slightly lower mini-
mum and higher maximum value achieved by the hybrid
algorithm.
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Figure 1. Convergence properties of the hybrid model
with respect to the original model for the case of the prob-
lem of Cassini2, using DE7.

5. CONCLUSION

In this paper, we have shown how trajectory optimisation
problems can profit from the introduction of approximate
models. We have shown that hybrid algorithms evolving
at times with the original and at times with the approx-
imate objective function (ANN) can be characterised by
similar convergence properties and a statistically proven
similar performance. However, objective functions eval-
uations with the ANN are much “cheaper” than those per-
formed with the original fitness functions of the trajectory
optimisation problems. The fact that the hybrid model
consistently found better solutions than the original opti-
misation process is also encouraging and provides a hint
that the approximation models can also lead to better so-
lutions apart from the evident speedup, provided they un-
dergo the right tuning.

As the implementation and the results presented are
rather preliminary, in future work, we intend to study
more in depth the impact of the implementation parame-
ters on the final performance, in order to reap the maxi-
mum benefit out of the approximate model, without run-
ning the risk of wrong convergence. Moreover, we intend
to apply this technique to other, different trajectory opti-
misation problems, such as low-thrust problems. These
problems are harder to solve for conventional optimisa-
tion techniques since they are on the side of constraint
optimisation and since their dimension is usually much
higher than problems treating impulsive thrust. More-
over, function evaluations for these problems tend to
be more computationally expensive, which makes them
suited for approximation models.
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